How the Industrial IoT is transforming industrial applications

April 27, 2018

Story

How the Industrial IoT is transforming industrial applications

IoT projects can offer whole new business models, such as product-as-a-service, which means that the right people need to be involved to assess the opportunity and develop ideas.

The Industrial Internet of Things (IIoT) involves a wide range of technology, from semiconductors to cloud computing and artificial intelligence. Businesses can use this technology for different levels of disruption: they can use IoT to make their processes more efficient  – or they can use it to digitally transform their businesses (customer and supplier relationships as well as internal processes) and disrupt the industry.

Manufacturers are defining and prioritizing IoT projects in exactly the same way as they would any new technology – "it can be done" doesn’t mean "it should be done" – the proposer needs to build a business case. IoT projects can offer whole new business models, such  as product-as-a-service (often called servitization), which means that the right people need to be involved to assess the opportunity and develop ideas to fit the organization’s priorities, timescales, budgets, and culture.

To introduce its Sigma Air Utility operator model, with pricing based on the consumed quantity of compressed air, Kaiser Compressors needed to build instrumented, connected machines. If the machines fail, the revenue stops, so with all servitization business models, there is new commercial pressure to build reliable machines and minimize maintenance downtime. This approach requires technical and business involvement in the decision making. Existing processes for gathering requirements and defining plans for projects of this type may not be sufficient. As the apocryphal quote attributed to Henry Ford explains, “My customers would have asked for faster horses.”

However, what counts as transformational can depend on your point of view. Another example is a remote access IoT system that allowed authorized process engineers to log in to their factory production lines. One process engineer claimed, “It changed my life.” This individual had previously struggled to accept night-shift stand-by duties. For him, the change has been transformational, even though the remote access needed is hardly new technology. Now, he volunteers for the night shift, “…and if I can’t handle it online, I can usually guide the onsite team to fix problems.”

Remote access is entry-level IoT. The next step is to feed asset data into analysis and control systems. Taking an IoT approach rather than a traditional machine-to-machine approach pays off here, because in addition to solving remote and multi-site communication questions (an internet connection is all that’s needed), it also simplifies connection to suitable analysis software hosted in the cloud. The IoT approach supports many configurations, so, for example, if low latency response must be guaranteed, an IoT approach can integrate local (edge) servers. The spectrum of capabilities was recently summarized by Brett Murphy of RTI as a range from "monitoring" at the simple end, to "optimization" where data from one or more assets can be analyzed and the results used by an operator to adjust settings for better performance, up to "autonomy" where the IoT software makes the adjustments automatically.

In the medical world, Microsoft suggests four areas where processes and patient care can be improved using IoT: monitoring patient care, monitoring medical assets, maintaining vital equipment, and tracking equipment usage. 

For example, MDCI Automation worked with Weka Health Solutions to develop a smart fridge, which enables clinicians in the field to better manage vaccine distribution and help them save lives. This refrigerated, automated vaccine dispensing system can hold between 250 to 400 vials and syringes depending on the facility need. The system manages inventory levels and automatically sends replenishment orders when inventory is running low using Microsoft Azure services. Weka can monitor machine health data that can be fed back to MDCI to help increase quality, user experience, and system design.

Monitoring, optimization, and autonomous technologies are often used within a manufacturer’s organization to increase efficiency and enable lean manufacturing initiatives. They can also be disruptive where they allow new business models to be established. It can be easier to see transformational effects from projects that offer something new to customers, such as field service and asset management. For example, see Figure 1 where GE Digital and PTC have formed a partnership to provide innovative solutions to companies like Elekta. Here, the transformation is due to the connectivity of the machines Elekta sells to its customers.

Elekta, a Swedish manufacturer of medical technologies for treating cancer and brain disorders, uses connectivity and smart device technology to help differentiate their service business and expedite the way their products are being serviced. Elekta partnered with PTC and ServiceMax to implement Connected Field Service. In the first year of the project, Elekta carried out more than 600 preventative actions, which translates to uninterrupted treatments for more than 14,000 patients.
[Figure 1 | GE Digital and PTC have formed a partnership to provide innovative solutions to companies like Elekta.]

Predictive maintenance can be relevant both to machines in the factory, and also to products sold to customers. Rolls-Royce introduced its TotalCare Services some 20 years ago. TotalCare employs a “power by the hour” model in which customers pay for service based on engine flying hours. Rolls-Royce analyzes engine data to manage customers’ engine maintenance and maximize aircraft availability. For security and availability reasons, ground-to-aircraft communications are independent of the Internet, using a specific Aircraft Communications Addressing and Reporting System (ACARS). Since its introduction, the scope of TotalCare has grown in parallel with the growth in sensors-per-engine, and the capacity to analyze large volumes of data per engine per hour. Now, the Efficiency Insight service includes Engine Health Monitoring, and tracks the health of thousands of engines operating worldwide.

Previously only relevant to low-unit-volume, high-unit-cost industries such as aerospace, the dramatic falls in sensor and communication costs have broadened the potential of these concepts to other industries. For example, food processing machinery makers Minerva Omega created the start-up DSC Nexus, which has brought IoT capabilities to machinery, including slicing machines found on retail meat and cheese counters. For these relatively low cost machines, sensing is achieved by monitoring the electric current/voltage profiles during start up, during no-load, and while cutting. So a new power cord with an integrated sensor and Wi-Fi connectivity is all that’s needed to retrofit an existing machine. When the electricity waveform demonstrates it’s time for a new blade, appropriate operator or technician action can be scheduled.

While predictive maintenance is often the first application in the manufacturing sector, there are other highlights in other sectors. The common theme is business justification based on achieving goals familiar to manufacturers since long before IoT i.e.:

  • Reduce costs and improve operations
  • Achieve competitive advantage by offering customers a better experience
  • Open up new business opportunities.

The balance of these three goals varies, but they are always there, whether it’s connected car in automotive, cloud services for voice control of consumer goods, smart grid architectures in utilities or automated vaccine-dispensing systems in the medical world.

In agriculture, use of equipment across the whole business network is changing, from the supply of agricultural machines to the operation of fleets in the field using GPS, automated harvest collection and product identification and tracking. In construction, the trend towards off-site manufacturing and on-site assembly is being taken to the next level in OPTIMISED, a €7m EC (European Commission) funded H2020 Factory of the Future project focused on advanced manufacturing. According to Graham Herries, the EU ‘OPTIMISED’ Project Coordinator, this will apply a range of IoT technologies including RFID, edge computing, drones and deep learning to item tracking, personnel management using wearables, all based on building information modeling (BIM) management. In retail, IoT is helping deliver every supply chain manger’s dream of visibility and Walmart, working with IBM, is taking the opportunity to integrate ‘blockchain’ technology for distributed ledgers to ensure food security through supply networks.

As success stories such as these – from the ‘early adopters’ – become more common, the technology will be taken up by the majority in that industry, and it will become mainstream. As this happens, the term ‘IoT’ will be used less and less as the focus will be on the solution in that particular industry.

Alan Griffith is Principal Consultant for Cambashi. His focus is to understand how engineering and manufacturing organizations use technical software applications to meet their business needs, and to assist the software companies who develop and market those applications with their market planning. He has an Engineering degree from Cambridge University and qualified as a Chartered Engineer and PRINCE2 project manager.